Anomaly Detection Based on k-nearest Neighbor Isolation Forest
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Anomaly detection is one of the research focuses in machine learning and data mining, which is mainly used in fault diagnosis, intrusion detection, and fraud detection. There have been many effective related studies, especially those of the anomaly detection method based on isolation forest, but there are still many difficulties in the processing of high-dimensional data. A new anomaly detection algorithm, k-nearest neighbor based isolation forest (KNIF), is proposed. The method uses hyperspheres as an isolation tool, utilizes the k-nearest neighbor method to construct an isolation forest, and constructs a distance-based outlier calculation method. Sufficient experiments show that the KNIF method can effectively detect anomalies in complex distribution environments and can adapt to application scenarios of different distribution forms.

    Reference
    Related
    Cited by
Get Citation

丁鹏霖.基于k近邻隔离森林的异常检测.计算机系统应用,2023,32(2):199-206

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 31,2022
  • Revised:August 09,2022
  • Adopted:
  • Online: December 09,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063