Diabetic Retinopathy Image Segmentation Based on Multi-task Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A multi-class image segmentation method based on multi-task learning is proposed for diabetic retinopathy (DR) images. Specifically, the dominant pixels without lesion information are removed by the Otsu thresholding algorithm; subsequently, the image is segmented into several small-sized images by the method of sliding window segmentation to solve the problems that the resolution of medical images is too large and the proportion of lesions in the image is small; then, sub-images without lesions are eliminated to increase the proportion of those with lesions; finally, multi-output multi-lesion image segmentation is performed by leveraging the multi-task learning properties of UNet++ and replacing traditional upsampling with transposed convolution. When the proposed method is verified on the international public Indian diabetic retinopathy image dataset (IDRID) and dataset for diabetic retinopathy (DDR), it achieves a mean area under precision-recall curve (mAUPR) of 0.7131 on IDRID and an mAUPR of 0.5691 on DDR.

    Reference
    Related
    Cited by
Get Citation

雷凯杰,崔永俊,马巧梅.基于多任务学习的糖尿病视网膜病变图像分割.计算机系统应用,2023,32(1):413-419

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 26,2022
  • Revised:July 06,2022
  • Adopted:
  • Online: November 14,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063