Remaining Useful Life Prediction of Aeroengine Based on Multi-feature Fusion
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To solve the problems of low prediction accuracy in aeroengine remaining useful life (RUL) prediction due to insufficient representative feature extraction, this study proposes an RUL prediction method based on multi-feature fusion for aeroengines. Exponential smoothing (ES) is performed to reduce the interference noise in the original data and thereby obtain relatively stable feature data. The time series features of the feature data are extracted by the bidirectional long short-term memory (Bi-LSTM) network and then assigned weights through the multi-head attention mechanism (Multi-attention). A convolutional long short-term memory (Conv-LSTM) network is designed to extract the spatio-temporal features of the feature data. Then, the handcrafted features of the feature data are extracted, and weights are calculated from the Softmax functions. A feature fusion framework is designed to fuse the above features, and RUL prediction is finally achieved by fully connected network regression. The commercial modular aero-propulsion system simulation (C-MAPSS) dataset is used to simulate and verify the proposed model. Compared with Bi-LSTM and other models, the proposed model achieves higher prediction accuracy and better adaptability.

    Reference
    Related
    Cited by
Get Citation

张晓东,秦子轩,李敏,史靖文.基于多特征融合的航空发动机剩余寿命预测.计算机系统应用,2023,32(3):95-103

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 21,2022
  • Revised:August 18,2022
  • Adopted:
  • Online: October 28,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063