Weather Scene Classification of UAV Aerial Video Images Based on Lightweight Transfer Learning
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The traditional CNN models have a poor weather classification effect for aerial video images and cannot satisfy the applications to mobile devices, and the existing weather image datasets are lacking, with single scenes. To address these problems, this study constructs four types of UAV aerial weather image datasets of sunny days, rainy days, snowy days, and foggy days for multiple scenes and proposes a weather scene classification model for UAV aerial video images based on lightweight transfer learning. The model uses a transfer learning approach to train two lightweight CNNs on the ImageNet dataset and designs three lightweight CNN branches for feature extraction. In feature extraction, EfficientNet-b0, a modification of the ECANet attention mechanism, is first used as the main branch to extract whole-image features, and two MobileNetv2 branches are employed to extract deep features unique to the sky and non-sky localities separately. Next, feature fusion is carried out for the three regions by Concatenate. Finally, a Softmax layer is used to classify the four classes of weather scenes. The experimental results indicate that the method achieves the accuracy of 97.3% in classifying weather scenes when applied to mobile and other computationally constrained devices, with good classification results.

    Reference
    Related
    Cited by
Get Citation

黄安陈,张晓滨,田泽,李云云,王家丰.基于轻量级迁移学习的无人机航拍视频图像天气场景分类.计算机系统应用,2023,32(2):371-378

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 06,2022
  • Revised:August 09,2022
  • Online: October 28,2022
Article QR Code
You are the first1015006Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063