Efficient Semantic-level Inpainting for Cracks in Single Asphalt Pavement Image
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The original damage-free pavement image is of great significance for analyzing the evolution details of pavement damages and formulating the next maintenance plan. However, the initial state corresponding to a pavement crack image cannot be obtained in field acquisition. To obtain the corresponding damage-free pavement image, this study proposes a deep image prior-based unsupervised crack image inpainting algorithm for asphalt pavements that enables efficient semantic-level inpainting of cracks in a single pavement image. Specifically, a robust principal component analysis algorithm is used to remove the vertical stripe noise on the surface of the pavement crack image. Then, the maximum between-class variance method and morphological processing are employed to obtain a binary mask image of the crack area. Finally, the crack area is inpainted with the proposed deep image prior-based inpainting algorithm to obtain the final damage-free pavement image. The proposed method is evaluated on a dataset of self-collected pavement crack images. The experimental results show that the proposed method can effectively achieve semantic-level inpainting of pavement crack images as it significantly improves the peak signal-to-noise ratio and structural similarity to an average of 43.3823 dB and 0.9834, respectively, compared with those of the traditional methods and it also achieves a high speed.

    Reference
    Related
    Cited by
Get Citation

崔二洋,路娜,阎志文.针对单张沥青路面图像中裂缝的高效语义级修复.计算机系统应用,2023,32(2):150-159

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 07,2022
  • Revised:August 09,2022
  • Online: November 14,2022
Article QR Code
You are the first1015006Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063