Abstract:In this study, a multimodal emotion recognition method is proposed, which combines the emotion recognition results of speech, electroencephalogram (EEG), and faces to comprehensively judge people’s emotions from multiple angles and effectively solve the problems of low accuracy and poor robustness of the model in the past research. For speech signals, a lightweight fully convolutional neural network is designed, which can learn the emotional characteristics of speech well and is overwhelming at the lightweight level. For EEG signals, a tree-structured LSTM model is proposed, which can comprehensively learn the emotional characteristics of each stage. For face signals, GhostNet is used for feature learning, and the structure of GhostNet is improved to greatly promote its performance. In addition, an optimal weight distribution algorithm is designed to search for the reliability of modal recognition results for decision-level fusion and thus more comprehensive and accurate results. The above methods can achieve the accuracy of 94.36% and 98.27% on EMO-DB and CK+ datasets, respectively, and the proposed fusion method can achieve the accuracy of 90.25% and 89.33% on the MAHNOB-HCI database regarding arousal and valence, respectively. The experimental results reveal that the multimodal emotion recognition method proposed in this study effectively improves the recognition accuracy compared with the single mode and the traditional fusion methods.