Pedestrian Detection in Intelligent Football Field Based on Improved YOLOv3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Football match scenes are featured with dense crowds and many mobile targets, and YOLOv3 algorithm has low detection accuracy and requires massive model parameters, which makes it unable to be deployed on mobile devices with limited computing power. In view of these problems, this study proposes a pedestrian detection method based on improved YOLOv3. Specifically, the study replaces the Darknet-53 backbone feature extraction network with a more efficient and lightweight GhostNet network, selects detection branch layers with four scales, and adopts the K-means++ algorithm to improve the clustering effect of the anchor box. Furthermore, the study adds spatial pyramid pooling to achieve an output with the same size as the input image, puts forward the CIoU loss function to calculate the loss value of target positioning, adds heatmap visualization, and uses Mosaic data enhancement in training. The experimental results show that YOLOv3-GhostNet achieves a mAP of 90.97% on the VOC fusion dataset, with an improvement of 1.75% compared with the YOLOv3 algorithm. In addition, it reduces the number of parameters by about 81.4% and increases the real-time detection rate by about 1.5 times, which shows a positive detection effect on small mobile devices.

    Reference
    Related
    Cited by
Get Citation

徐克圣,崔效魁.基于改进YOLOv3的智慧足球场行人检测.计算机系统应用,2023,32(1):288-295

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 30,2022
  • Revised:June 27,2022
  • Adopted:
  • Online: August 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063