Emotion Recognition of EEG Signals Based on Multi-channel and Continuous CNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Individual electroencephalogram (EEG) signals are different and vulnerable to environmental factors. In view of these problems, this study adopts methods of removing baseline interference and EEG channel selection and proposes an emotion classification and recognition algorithm based on a continuous convolutional neural network (CNN). Firstly, the selection of differential entropy (DE) characteristics of baseline signals is studied. After the data is processed into multi-channel input, the continuous CNN is used for classification experiments, and then the optimal number of electrodes is determined. The experimental results show that after the difference between the DE of experimental EEG signals and that of baseline signals of the subject one second before the experimental EEG is mapped into a two-dimensional matrix, and the frequency dimension is turned into a multi-channel form to serve as the input of the continuous CNN, the average classification accuracy of arousal and valence on 22 channel is 95.63% and 95.13%, respectively, which are close to that on 32 channel.

    Reference
    Related
    Cited by
Get Citation

梁椰舷,李婷,姬昊余.多通道连续卷积神经网络脑电信号情绪识别.计算机系统应用,2023,32(1):399-405

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 22,2022
  • Revised:June 20,2022
  • Adopted:
  • Online: August 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063