News Recommendation Algorithm Based on Fusion of Attention and Multi-perspective
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The existing news recommendation system fails to sufficiently consider the semantic information of news, and modeling factors for news body suffers from unity problems. Attention-BodyTitleEvent (Attention-BTE), a news recommendation algorithm based on fusion of attention and multi-perspectives, is proposed in this study. The BERT model and attention mechanism are applied to vectorize the body, title, and event in the news respectively. The three parts are combined to represent news vectorization, and then the candidate news and user browsing news data are processed respectively to obtain the corresponding candidate news vectorization and user vectorization. Finally, dot multiplication is conducted to obtain the probability of users clicking on the candidate news, namely the news recommendation result. Experimental data demonstrate that Attention-BTE improves the index by about 6% compared with the other news recommendation algorithm.

    Reference
    Related
    Cited by
Get Citation

范琳娟,孙喁喁,徐飞,周行行.注意力与多视角融合的新闻推荐算法.计算机系统应用,2022,31(12):178-186

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 13,2022
  • Revised:May 22,2022
  • Adopted:
  • Online: August 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063