Optimal BD Precoding Algorithm for Indoor Visible Light Multiuser MIMO System
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Block diagonalization (BD) belongs to a traditional linear precoding algorithm with multiple inputs and outputs, and its core idea is to find the orthogonal basis of the null space in interference matrixes through singular value decomposition (SVD), so as to eliminate the multiuser interference (MUI). However, as the number of transmitters and receivers increases, the BD precoding algorithm faces more complex computation, which has become one of the key factors restricting its development. Therefore, this study proposes an optimal low-complexity BD algorithm. The algorithm is based on the combination algorithm of Schmidt orthogonalization inversion and lattice reduction operation in orthogonal decomposition, and it replaces the SVD of two high-complexity operations on the traditional BD algorithm by Schmidt orthogonalization inversion and lattice reduction operation and thus reduces the algorithm complexity. The results show that the computational complexity of the optimal algorithm is reduced by 46.7%, and the system and capacity are increased by 2–10 bits/Hz. Furthermore, the bit error rate is improved by two orders of magnitude.

    Reference
    [1] 迟楠, 贾俊连. 面向6G的可见光通信. 中兴通讯技术, 2020, 26(2): 11–19. [doi: 10.12142/ZTETJ.202002003
    [2] Rahman MT, Parthiban R, Bakaul M. Integration and evaluation of hybrid RoF-VLC network. 2020 IEEE 8th International Conference on Photonics (ICP). Kota Bharu: IEEE, 2020. 84–85.
    [3] Kumar A, Ghorai SK. Performance of MIMO-VLC system for different radiation patterns of LED in indoor optical wireless communication system. 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). Goa: IEEE, 2019. 1–5.
    [4] 王辉, 孙中杰. 基于子流选择BD预编码的MIMO可见光通信系统. 光电子技术, 2015, 35(2): 126–130. [doi: 10.19453/j.cnki.1005-488x.2015.02.013
    [5] 张云艳, 王辉. 基于模代数预编码的MIMO室内可见光通信系统. 计算机工程, 2017, 43(3): 84–88. [doi: 10.3969/j.issn.1000-3428.2017.03.015
    [6] 祝锴, 王丽, 胡捍英. 基于BD的改进多用户MIMO预编码算法. 信息工程大学学报, 2010, 11(1): 7–10. [doi: 10.3969/j.issn.1671-0673.2010.01.002
    [7] 张颖, 高悦, 柯熙政. 预编码室内MIMO可见光通信系统空间相关性分析. 光电工程, 2020, 47(3): 190666. [doi: 10.12086/oee.2020.190666
    [8] Zayani R, Roviras D. Low-complexity linear precoding for low-PAPR massive MU-MIMO-OFDM downlink systems. International Journal of Communication Systems, 2021, 34(12): e4889. [doi: 10.1002/dac.4889
    [9] 高明, 孙成越, 林少兴, 等. 一种改进的块对角化预编码算法. 工程科学与技术, 2018, 50(2): 112–117. [doi: 10.15961/j.jsuese.201601413
    [10] 吕尉邦, 贺光辉. 一种适用于多用户MIMO系统的低复杂度S-GMI-THP预编码算法及硬件实现. 微电子学与计算机, 2019, 36(7): 6–11. [doi: 10.19304/j.cnki.issn1000-7180.2019.07.002
    [11] Zhao S, Li QZ, Tian MX. Capacity-maximized transmitter precoding for MU MIMO VLC systems with bounded channel uncertainties. IEEE Systems Journal, 2020, 14(4): 5144–5147. [doi: 10.1109/JSYST.2020.2984692
    [12] Chou CC, Wu JM. Low-complexity MIMO precoder design with LDLH channel decomposition. 2011 IEEE International Conference on Communications. Kyoto: IEEE, 2011. 1–5.
    [13] Wu J, Fang S, Li L, et al. QR decomposition and Gram Schmidt orthogonalization based low-complexity multi-user MIMO precoding. Proceedings of the 10th International Conference on Wireless Communications, Networking and Mobile Computing. Beijing: IET, 2014. 61–66.
    [14] 巫健. 多用户MIMO系统中基于格基规约的低复杂度预编码技术研究[硕士学位论文]. 成都: 电子科技大学, 2015.
    [15] Zu KK, de Lamare RC, Haardt M. Generalized design of low-complexity block diagonalization type precoding algorithms for multiuser MIMO systems. IEEE Transactions on Communications, 2013, 61(10): 4232–4242. [doi: 10.1109/TCOMM.2013.090513.130038
    [16] 王曼. 格基规约技术在混合预编码中的应用. 通信技术, 2021, 54(1): 34–37. [doi: 10.3969/j.issn.1002-0802.2021.01.006
    [17] 王洪霞. 基于r-凸函数的Choquet积分不等式. 模糊系统与数学, 2020, 34(4): 57–65
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

吴鹏飞,潘婷.室内可见光多用户MIMO系统改进BD预编码算法.计算机系统应用,2022,31(12):227-234

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 18,2022
  • Revised:May 22,2022
  • Online: August 24,2022
Article QR Code
You are the first990573Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063