Metapath-based Graph Transformer Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As new deep learning models, graph neural networks are widely used in graph data and promote various applications, such as recommendation systems, social networks, and knowledge graphs. Most existing heterogeneous graph neural models usually predefine multiple metapaths to capture composite relationships in heterogeneous graphs. However, some models usually consider one metapath during the feature aggregation, leading to models only learning neighbor structure but ignoring the global correlation of multiple matapaths. Others omit intermediate nodes and edges along the metapath, which means models cannot learn the semantic information in each metapath. To address those limitations, this study proposes a new model named metapath-based graph Transformer neural network (MaGTNN). Specifically, MaGTNN first samples heterogeneous graph as metapath-based multi-relation graph and then uses the proposed position encoder and edge encoder to capture the semantic information in a metapath. Subsequently, all the matapath-based neighbor information is aggregated to the target node through their similarity, which is calculated by the improved graph Transformer layer. Extensive experiments on three real-world heterogeneous graph datasets for node classification and node clustering show that MaGTNN achieves more accurate prediction results than state-of-the-art baselines.

    Reference
    Related
    Cited by
Get Citation

梁书晴,蒋运承.基于元路径的图Transformer神经网络.计算机系统应用,2022,31(11):1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 03,2022
  • Revised:April 02,2022
  • Adopted:
  • Online: July 15,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063