Fast Skeleton-based Hand Gesture Recognition Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Skeleton data is compact and robust to environmental conditions for hand gesture recognition. Recent studies of skeleton-based hand gesture recognition often use deep neural networks to extract spatial and temporal information. However, these methods are likely to have problems such as complicated computation and a large number of model parameters. To solve this problem, this study presents a lightweight and efficient hand gesture recognition model. It uses two spatial geometric features calculated from skeleton sequences and automatically learned motion trajectory features to achieve hand gesture classification with convolutional networks alone as its backbone network. The proposed model has a minimum number of parameters as small as 0.16M and a maximum computational complexity of 0.03 GFLOPs. This method is also evaluated on two public datasets, where it outperforms the other methods that use skeleton modality as input.

    Reference
    Related
    Cited by
Get Citation

赵阳,刘汉超,董兰芳.基于骨架的快速手势识别模型.计算机系统应用,2022,31(11):261-267

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 24,2022
  • Revised:March 28,2022
  • Adopted:
  • Online: July 07,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063