Application of Ordinal Classification Prediction in Evolutionary Algorithms
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Solving expensive optimization problems is often accompanied by computational cost disasters. To reduce the number of real evaluations of the objective function, this study uses the ordinal prediction method in the selection of candidate solutions in evolutionary algorithms. The relative quality of candidate solutions is directly obtained through classification prediction, which avoids the need to establish an accurate surrogate model for the objective function. In addition, a reduction method for the ordinal sample set is designed to reduce the redundancy of the ordinal sample set and improve the training efficiency of the ordinal prediction model. Next, the ordinal prediction is combined with the genetic algorithm. The simulation experiments of the ordinal prediction-assisted genetic algorithm on the expensive optimization test function show that the ordinal prediction method can effectively reduce the computational cost of solving expensive optimization problems.

    Reference
    Related
    Cited by
Get Citation

毛立伟,贺慧芳,李文彬,郭观七.序的分类预测在进化算法中的应用.计算机系统应用,2022,31(11):199-206

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 27,2022
  • Revised:February 24,2022
  • Adopted:
  • Online: July 14,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063