Extraction Model of Measurable Quantitative Information Based on Position Feature and Dependency Tree
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    As medical informatization is constantly improving, electronic medical records have been more and more widely used, of which the unstructured text contains massive measurable quantitative information including patient clinical conditions. Due to the complexity of entities and quantitative information, it is a challenge to accurately extract measurable quantitative information. In this study, we propose the RPA-GRU model combining the relative position feature and attention mechanism based on a bi-directional gated recurrent unit. It incorporates the relative position feature into the attention mechanism to identify entities and quantity information. Meanwhile, the GATM model is proposed according to the reconstructed dependency tree-based graph attention network to learn graph-level representation, thus achieving the association between entities and quantity information. The experiment is based on 1359 electronic medical records from the burn injury department of a three-A hospital. The results show that the F1 values of RPA-GRU model and GATM model are 97.58% and 97.86% respectively in terms of identification and association of measurable quantitative information, up by 2.17% and 1.74% compared with the best-performing baseline model. In this way, the effectiveness of the proposed models is validated.

    Reference
    Related
    Cited by
Get Citation

聂文杰,莫迪,黄邦锐,刘海,郝天永.基于位置特征和句法依存树的可度量数量信息抽取模型.计算机系统应用,2022,31(10):279-287

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 17,2022
  • Revised:February 17,2022
  • Online: June 24,2022
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063