Article Recommendation Model with Two-channel Deep Topic Feature Extraction
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    For the cold start, sparse user feedback, and poor accuracy of similarity measurement in traditional article recommendation methods, this study proposes contextualized topic BERT (ctBERT), an article similarity calculation method that combines BERT with the topic model. The algorithm calculates the similarity scores between the given query and the related articles. The preprocessed articles are input into separate sub-modules for feature extraction and similarity score calculation. The similarity score is combined with the personalization score of the support set to obtain the final score. The algorithm is further improved by integrating single-sample learning into the recommendation framework. The experimental results from three different datasets show that the proposed method improves the NDCG criteria on all three datasets. For example, the NDCG@3 and NDCG@5 criteria improve by 6.1% and 7.2% respectively compared with other methods on the Aminer dataset, which validates the effectiveness of the method.

    Reference
    Related
    Cited by
Get Citation

井明强,房爱莲.双通道深度主题特征提取的文章推荐模型.计算机系统应用,2022,31(10):323-328

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 30,2021
  • Revised:January 31,2022
  • Online: July 07,2022
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063