User Energy Classification Based on Auto-learned Edge Weights Graph Convolution Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    User classification is an important method for energy consumption analysis, and the wide application of smart meters provides a large number of available data for user classification. To improve the accuracy of user classification and the extraction ability of energy consumption features, this study proposes a graph convolutional network (GCN) of self-learned edge weights for user classification. It converts the original energy consumption data into a graph through a special initialization layer with attention mechanisms and extracts energy consumption features from the generated graph. Then, the proposed network outputs the user classes according to the learning features of the graph. Through comparative experiments on a real energy consumption dataset, it is proven that the feature extraction of the proposed method is more intuitive and clear, and the classification performance of the proposed method is better than the existing methods.

    Reference
    Related
    Cited by
Get Citation

李文峰,邓晓平,彭伟,孟宋萍.基于自学习边权重图卷积网络的用户用能分类.计算机系统应用,2022,31(9):294-299

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 22,2021
  • Revised:January 24,2022
  • Adopted:
  • Online: May 31,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063