3D Face Recognition with Multi-modal Fusion Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Two-dimensional (2D) face recognition is greatly affected by illumination, occlusion, and attitude. To overcome these shortcomings, this study proposes a 3D face recognition algorithm with multi-modal fusion based on deep learning. Firstly, the convolutional autoencoder fuses the color image and the depth map, and the fused image is input to the network for pre-training. In addition, a new loss function cluster loss is designed for pre-training in combination with the Softmax loss, so as to obtain a highly accurate model. Then, transfer learning is employed to fine-tune the pre-trained model, and thus a lightweight neural network model is obtained. The processed original dataset is used as the test set, and the identification accuracy of the test reaches 96.37%. Experimental results verify that the proposed method makes up for some shortcomings of 2D face recognition, and it is less affected by illumination and occlusion. Compared with 3D face recognition using high-precision 3D face images, the proposed algorithm is faster and more robust.

    Reference
    Related
    Cited by
Get Citation

胡乃平,贾浩杰.基于深度学习的多模态融合三维人脸识别.计算机系统应用,2022,31(8):152-159

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 16,2021
  • Revised:December 14,2021
  • Adopted:
  • Online: June 16,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063