Single-view 3D Reconstruction Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Single-view 3D reconstruction is a challenging problem in computer vision. To improve the accuracy of the 3D model reconstructed by the existing 3D reconstruction algorithm, this study extracts both global and local features of the image. On this basis, the signed distance function (SDF) is used to describe the reconstructed 3D objects. In this way, high-quality 3D shapes are generated, and the model has higher accuracy and enhanced generalization capability, which enables the deep model to reconstruct other types of objects with high quality. Experiments demonstrate that compared with the most advanced reconstruction algorithm at present, the proposed deep network and the method for representing 3D shapes have better performance in the effects of reconstructed 3D models and the generalization of new objects.

    Reference
    Related
    Cited by
Get Citation

邹泞键,冯刚,陈卫东.基于深度学习的单视图三维重建.计算机系统应用,2022,31(9):300-305

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 10,2021
  • Revised:January 10,2022
  • Adopted:
  • Online: June 16,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063