Estimation of Intravoxel Incoherent Motion Imaging Parameters Based on Dynamic Convolution
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Intravoxel incoherent motion (IVIM) magnetic resonance imaging is a non-invasive technique, which can characterize the diffusion and perfusion of water molecules in biological tissues. Traditional IVIM parameters estimation methods are highly affected by the noise, and the parameter estimation is not effective. In order to accurately and quickly determine the diffusion and perfusion parameters in tissue regions, this study proposesd a one-dimensional dynamic convolutional neural network (DCNN) based on the dynamic convolutional module to estimate IVIM parameters. It takes into account the contextual information between the voxel signals and the contribution of b-values, to estimate IVIM parameters. The DCNN is compared with the traditional estimation method on the test simulation data and real acquisition images underwith different noise levels. The experimental results show that the proposed DCNN method can reduce the coefficient of variation, bias, and relative root mean square error of the IVIM parameters and, improve the parameter consistency and robustness, and have good visual quality at the same time.

    Reference
    Related
    Cited by
Get Citation

邓开轩,程欣宇,王丽会.基于动态卷积的体素内不相干运动成像参数估计.计算机系统应用,2022,31(8):212-222

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 25,2021
  • Revised:December 22,2021
  • Adopted:
  • Online: June 16,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063