Skin Detection and Correction Algorithm Combining Deep Feature and Edge Feature
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    When no obvious boundaries exist between skin regions and non-skin regions, skin detection becomes extremely difficult. To solve this problem, we propose a new skin detection and correction algorithm. Firstly, this study uses a convolutional neural network (CNN) to extract skin features such as colors and texture step by step and then subdivides the boundary region of skin and non-skin pixels through the gated convolutional layer to enhance the effect of skin detection. Finally, ASPP is applied to fuse deep information and edge information. The detection results from rough threshold segmentation are used as input for the evaluation on ECU and Pratheepan datasets. The experimental results show that the accuracy of this algorithm reaches up to 91% on the ECU dataset and 95% on the Pratheepan dataset. The performance of the proposed algorithm has been significantly improved compared with that of the existing methods.

    Reference
    Related
    Cited by
Get Citation

王芸.融合深层特征与边缘特征的皮肤检测校正算法.计算机系统应用,2022,31(8):298-304

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 13,2021
  • Revised:December 13,2021
  • Adopted:
  • Online: May 31,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063