Risk Assessment of Power Monitoring System Based on Cloud Model and Improved Evidence Theory
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In view of the problems existing in the risk assessment of power monitoring systems, such as incomplete system modeling, fuzzy evaluation opinions of experts, and lack of consideration of the overall risk of systems, a risk assessment method for power monitoring systems is proposed, which is based on the cloud model and improved evidence theory. Firstly, according to the structure and security requirements of a power monitoring system, the equipment, security objectives, and threats of the system are analyzed, and the overall risk assessment model of the system is built. Then, in combination with the FAHP and modified entropy weight method, the weight of each element is obtained by using the optimal combination weighting method. Finally, the comprehensive risk assessment of the power monitoring system is completed by the cloud model and improved evidence theory, and the risk level of the system is obtained. The simulations show that the method is feasible and effective, which provides a new idea for the security management of the power monitoring system.

    Reference
    [1] Yao JM, Wu P, Wang Y, et al. Research on power wireless network quality evaluation method based on multi-dimensional index. Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). Chongqing: IEEE, 2020. 376–381.
    [2] 杨至元, 张仕鹏, 孙浩, 等. 基于Cyber-Net与学习算法的变电站网络威胁风险评估. 电力系统自动化, 2020, 44(24): 19–27. [doi: 10.7500/AEPS20191230009
    [3] 金文俊. 基于社团结构的电力通信网可靠性评估方法[硕士学位论文]. 北京: 北京邮电大学, 2019.
    [4] 王俊芳. 面向状态检修的继电保护系统可靠性评估[硕士学位论文]. 北京: 北京交通大学, 2018.
    [5] 梁宁波. 电力监控系统漏洞隐患排查及风险管理技术研究. 自动化博览, 2019, 36(S2): 41–45
    [6] 杨鹏. 电力监控系统中KVM系统和动力环境监控系统的安全风险分析研究. 电工技术, 2017, (8): 10–11. [doi: 10.3969/j.issn.1002-1388.2017.08.005
    [7] 梁智强, 林丹生. 基于电力系统的信息安全风险评估机制研究. 信息网络安全, 2017, (4): 86–90. [doi: 10.3969/j.issn.1671-1122.2017.04.012
    [8] 曹波, 吴峥, 杨杉, 等. 电力监控系统脆弱性评估模型研究. 计算机与数字工程, 2014, 42(1): 107–111. [doi: 10.3969/j.issn.1672-9722.2014.01.029
    [9] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器. 计算机研究与发展, 1995, 32(6): 15–20
    [10] 付斌, 李道国, 王慕快. 云模型研究的回顾与展望. 计算机应用研究, 2011, 28(2): 420–426. [doi: 10.3969/j.issn.1001-3695.2011.02.004
    [11] 张仕斌, 许春香. 基于云模型的信任评估方法研究. 计算机学报, 2013, 36(2): 422–431
    [12] 徐岩, 陈昕. 基于合作博弈和云模型的变压器状态评估方法. 电力自动化设备, 2015, 35(3): 88–93. [doi: 10.16081/j.issn.1006-6047.2015.03.014
    [13] 胡文平, 于腾凯, 巫伟南. 一种基于云预测模型的电网综合风险评估方法. 电力系统保护与控制, 2015, 43(5): 35–42. [doi: 10.7667/j.issn.1674-3415.2015.05.006
    [14] 龙赛琴, 黄金娜, 李哲涛, 等. 面向云网融合的数据中心能效评估方法. 计算机研究与发展, 2021, 58(6): 1248–1260. [doi: 10.7544/issn1000-1239.2021.20201069
    [15] 李玲玲, 刘敬杰, 凌跃胜, 等. 物元理论和证据理论相结合的电能质量综合评估. 电工技术学报, 2015, 30(12): 383–391. [doi: 10.3969/j.issn.1000-6753.2015.12.048
    [16] 张文元, 赵卫国, 晋涛, 等. 多神经网络与证据理论的变压器故障诊断方法. 高压电器, 2018, 54(8): 207–211. [doi: 10.13296/j.1001-1609.hva.2018.08.032
    [17] Li P, Wei CP. An emergency decision-making method based on D-S evidence theory for probabilistic linguistic term sets. International Journal of Disaster Risk Reduction, 2019, 37: 101178. [doi: 10.1016/j.ijdrr.2019.101178
    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 26333-2010 工业控制网络安全风险评估规范. 北京: 中国标准出版社, 2011.
    [19] 林云威, 陈冬青, 彭勇, 等. 基于D-S证据理论的电厂工业控制系统信息安全风险评估. 华东理工大学学报(自然科学版), 2014, 40(4): 500–505. [doi: 10.3969/j.issn.1006-3080.2014.04.016
    [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20984-2007 信息安全技术 信息安全风险评估规范. 北京: 中国标准出版社, 2007.
    [21] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估. 浙江大学学报(工学版), 2016, 50(4): 759–765. [doi: 10.3785/j.issn.1008-973X.2016.04.022
    [22] 张吉军. 模糊层次分析法(FAHP). 模糊系统与数学, 2000, 14(2): 80–88. [doi: 10.3969/j.issn.1001-7402.2000.02.016
    [23] Zhi H, Zhang GD, Liu YQ, et al. A novel risk assessment model on software system combining modified fuzzy entropy-weight and AHP. Proceedings of the 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). Beijing: IEEE, 2017. 451–454.
    [24] Firth S. Combination of evidence in Dempster-Shafer theory. Contemporary Pacific, 2002, 11(2): 416–426
    [25] 狄鹏, 倪子纯, 尹东亮. 基于云模型和证据理论的多属性决策优化算法. 系统工程理论与实践, 2021, 41(4): 1061–1070
    [26] 奚婷婷. 多传感器数据融合中DS证据理论算法的改进与应用[硕士学位论文]. 无锡: 江南大学, 2009.
    [27] 徐选华, 吴慧迪. 基于改进云模型的语言偏好信息多属性大群体决策方法. 管理工程学报, 2018, 32(1): 117–125. [doi: 10.13587/j.cnki.jieem.2018.01.01
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

曾颖,武斌,田宁姗.基于云模型和改进证据理论的电力监控系统风险评估.计算机系统应用,2022,31(8):55-63

Copy
Share
Article Metrics
  • Abstract:667
  • PDF: 1642
  • HTML: 1330
  • Cited by: 0
History
  • Received:November 03,2021
  • Revised:December 02,2021
  • Online: May 31,2022
Article QR Code
You are the first990413Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063