Recommendation Model Based on Heterogeneous Information Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address the cold-start and sparsity problems of recommendation systems, this study proposes a recommendation model based on a heterogeneous information network. Previous approaches are unable to take into account both knowledge graph representation learning and implicit path information, which makes the performance of knowledge recommendation systems mediocre. The proposed method sets meta-paths in the heterogeneous information network and integrates them into knowledge graph representation learning by the graph neural network (GNN). Next, the attention network is used to connect a recommendation task with a knowledge graph representation task. It can not only learn the potential features of the two tasks but also enhance the interactions between the recommended items in the recommendation system and the entities in the knowledge graph. Finally, the user click rate is predicted in the recommendation task. The method is experimented on the open dataset Book-Crossing and the knowledge graph constructed with the DBLP dataset, and the results demonstrate that the proposed model achieves better performance than that of other algorithms in indexes of area under curve (AUC), recall, and F1-score.

    Reference
    Related
    Cited by
Get Citation

陈可迪,赵雷,陈心怡,施科男.基于异质信息网络的推荐模型.计算机系统应用,2022,31(8):361-368

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 28,2021
  • Revised:November 29,2021
  • Adopted:
  • Online: April 18,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063