Trajectory Collaborative Planning of Multi-UAV Based on Decision-making Knowledge Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Considering the internal driving mechanism of behavior decision-making and state changes of multiple UAVs, a collaborative trajectory planning method based on decision-making knowledge learning is proposed from the perspective of information processing. Firstly, the behavior states of UAVs are represented by knowledge on the basis of the Markov decision process, and the decision-making knowledge on continuous action space is developed. Then, a deep deterministic policy gradient (DDPG) algorithm based on decision-making knowledge learning is presented to achieve the collaborative planning of UAVs on the decision-making knowledge level. The experimental results reveal that on the basis of developing a demonstration system, the method can obtain an optimal trajectory planning strategy by reinforcement learning and can simultaneously achieve the convergence and stability of the comprehensive evaluation and average reward of trajectories, which provides decision-making support for mission execution of UAVs.

    Reference
    Related
    Cited by
Get Citation

曾熠,刘丽华,李璇,杜溢墨,陈丽娜.基于决策知识学习的多无人机航迹协同规划.计算机系统应用,2022,31(8):125-132

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 29,2021
  • Revised:November 29,2021
  • Adopted:
  • Online: June 01,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063