Defect Detection of Large-size Light Guide Plate Based on Improved YOLOv3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Large-size light guide plates (LGPs) with single edge lighting have the characteristics of uneven dot distribution, different defect sizes and shapes, complex background texture and so on. The traditional machine vision method of manually selecting features has insufficient generalization ability. In response, this study proposes a defect detection method based on improved YOLOv3 for large-size LGPs. Firstly, the improved multi-branch RFB module is introduced into the shallow feature layer of the network to increase the network receptive field, enrich the target semantic information and strengthen the ability of feature extraction. Secondly, the depth separable convolution is used to replace the standard convolution to reduce the size and calculation of the model. Furthermore, the K-means algorithm is improved to linearly scale the clustered anchor box so that it can be closer to the real box. Finally, a large number of experimental studies are carried out by using the defect pictures of large-size LGPs collected in a production site. The experimental results show that the average accuracy of the proposed detection algorithm is 98.92%. Compared with YOLOv3, this method has the average accuracy and F1 increased value by 8.55% and 10.76% respectively with a detection speed reaching 71.6 fps, which can meet the detection accuracy requirements of industrial production.

    Reference
    Related
    Cited by
Get Citation

胡金良,李俊峰.基于改进YOLOv3的大尺寸导光板缺陷检测.计算机系统应用,2022,31(6):279-286

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 17,2021
  • Revised:October 14,2021
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063