Optimization of Task Allocation System for Online Car-hailing
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Online car-hailing is a kind of widely used mobile application. Its core problem is to assign requests to taxi drivers with different goals. Although extensive research on task allocation has been carried out, a largely ignored problem is the income equality of drivers. Due to the short-sighted optimization and time-consuming allocation, fairness and utility receive less attention in the research on fair task allocation. In this study, an efficient task assignment scheme, learning to assign with fairness (LAF), was proposed to optimize both utility and fairness. It adopts reinforcement learning to allocate tasks holistically and proposes a set of acceleration techniques to achieve rapid and equitable allocation on a large scale. The experimental results show that the fairness, effectiveness, and efficiency of LAF are 86.7%, 29.1%, and 797% higher than the existing level, respectively.

    Reference
    Related
    Cited by
Get Citation

陈立军,张屹,陈孝如,杨微.网约车任务分配系统优化.计算机系统应用,2022,31(6):19-28

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 14,2021
  • Revised:October 14,2021
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063