Person Re-identification Based on Variational Adversarial and Reinforcement Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Person re-identification (ReID) technology is easily disturbed by the pose variation which causes loss of person information and appearance changes exceeding identity differences. It is a challenging task for existing ReID methods to learn robust person features. For such problems, we propose the generative adversarial network (GAN) based on variational inference and reinforcement learning (RL-VGAN). The core idea of the proposed method is to disentangle person attributes into appearance features and pose features via appearance and pose encoders, which learns robust identity-related features without interference from pose changes. Firstly, the designed variational generative network leverage the Kullback-Leibler divergence loss to strengthen the appearance encoder for inferring identity-related continuous latent variables. Secondly, we use reinforcement learning to balance the performance of the generative and discriminative networks during the training process. Thirdly, for the pose-guided generative task, a novel Inception Score loss is designed for evaluating the image synthesis quality in the variational generative network. Experimental results demonstrate the superiority of the proposed RL-VGAN over other methods for the benchmark datasets.

    Reference
    Related
    Cited by
Get Citation

陈莹,夏士雄,赵佳琦,周勇,姚睿,朱东郡.基于变分对抗与强化学习的行人重识别.计算机系统应用,2022,31(6):192-201

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 11,2021
  • Revised:October 14,2021
  • Adopted:
  • Online: February 21,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063