Short-term Wind Speed Prediction Based on EEMD-GRU Network Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For the low prediction accuracy caused by the inherent vibration and nonlinear characteristics of wind speed signal, a combined model of the ensemble empirical mode decomposition (EEMD) and the gated recurrent unit (GRU) is proposed to predict the wind speed. Firstly, the model normalizes the data and removes outliers by isolated forest. The wind speed is then resolved into signals of different scales by EEMD to obtain stable component signals with the non-stationary data removed. The component signals are trained by the GRU model, from which the predictions are accumulated to obtain the final wind speed. The data collected in the field are applied for the experiment. The results show that the EEMD-GRU method has a significant improvement in the prediction accuracy compared with the dominated EEMD-LSTM and EMD-LSTM methods.

    Reference
    Related
    Cited by
Get Citation

杨芮,徐虹,文武.基于EEMD-GRU网络模型的短期风速预测.计算机系统应用,2022,31(6):231-237

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 09,2021
  • Revised:October 14,2021
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063