Inlet Valve Temperature Prediction of Valve Cooling System Based on T2VNN Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Predicting the change trend of inlet valve temperature can provide important reference for the safety and reliability of equipment operation in valve cooling systems. For the problems of difficult feature extraction and low prediction accuracy of traditional methods, a Time2Vec neural network (T2VNN) model is put forward for predicting inlet valve temperature. This model firstly extracts the features of inlet valve temperature by Time2Vec, a time series representation learning method, and then capitalizes on the advantages of the TCN and bidirectional LSTM to achieve probabilistic prediction by quantile regression. Finally, comparative experiments with different time steps and quantiles on several typical models are designed. The experimental results verify that the T2VNN model has higher prediction performance, and the effectiveness of each component in the model is demonstrated by ablation experiments.

    Reference
    Related
    Cited by
Get Citation

陈霖,周宇.基于T2VNN模型的阀冷系统进阀温度预测.计算机系统应用,2022,31(6):132-140

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 13,2021
  • Revised:September 29,2021
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063