Multi-source Fusion Indoor Positioning Algorithm Based on Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    WiFi signals are unstable in complex indoor environments and the distortion effects of buildings on the geomagnetic field results in the low accuracy of single-source positioning. Considering this, this study adopts multi-source information fusion positioning technology that can effectively use WiFi and fingerprint data of the geomagnetic field for positioning and proposes an improved adaptive differential evolution algorithm to optimize the BP neural network (IDEBP). This method optimizes the weights and deviations of the BP neural network by improving the mutation, crossover, and selection operation of the differential evolution algorithm, which helps the BP model to better learn the characteristics of WiFi and fingerprint data of the geomagnetic field. The simulation shows that the proposed algorithm greatly improves the accuracy of indoor fingerprint positioning.

    Reference
    Related
    Cited by
Get Citation

陈娟,单志龙,邓嘉豪,曾衍华.基于神经网络的多源融合室内定位算法.计算机系统应用,2022,31(6):224-230

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2021
  • Revised:October 11,2021
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063