3D Path Planning of UAV in Complex Urban Environment
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A transition-based rapidly-exploring random tree (T-RRT) algorithm can quickly find a low-risk path for a robot in a two-dimensional complex cost space, but it delivers a poor planning result for an unmanned aerial vehicle (UAV) in the three-dimensional flight condition. To solve this problem, this study proposes an exploring heuristic transition-based RRT (EHT-RRT) algorithm. The algorithm introduces the heuristic idea of the A* algorithm on the basis of the T-RRT to explore the heuristic cost, and it estimates the path cost from the perspectives of risk degree, path length, path deflection angle, and height change to improve the quality of the path. Then, the local node slip strategy is employed to make the path deviate to the low-risk area, and the local best direction attribute is added to each node. At last, the tree node exploration mechanism is improved through three directional vectors, i.e., random direction, target direction, and local best direction, to get rid of the blindness of the T-RRT algorithm in path finding. In addition, a target point offset with a probability of 20% is used to improve the planning efficiency. The results of simulation experiments show that compared with T-RRT, BT-RRT, and T-RRT* algorithms with the same target point offset each, the EHT-RRT algorithm can generate a shorter, safer, and smoother 3D path and better solve the 3D path planning problem of UAV in complex urban environments.

    Reference
    Related
    Cited by
Get Citation

卢成阳,王文格.复杂城市环境下无人机三维路径规划.计算机系统应用,2022,31(5):184-194

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 15,2021
  • Revised:August 24,2021
  • Adopted:
  • Online: February 25,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063