Pedestrian Monitoring System in Complex Road Scene Based on Kunpeng Cloud
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the development of transportation intellectualization, forwarding encrypted highway surveillance videos to the cloud has become a major trend in transportation development. Deep transportation data mining, especially pedestrian detection, is one of the crucial problems to be solved in this trend. In this study, to address the problem of pedestrian detection in various road environments, we propose an all-weather pedestrian monitoring solution based on the Kunpeng Cloud. The video streams in the surveillance camera are forwarded to the Kunpeng Cloud through a streaming service. Then, the Kunpeng Cloud decodes the video streams, detects pedestrians, and saves pedestrian history information. Finally, it analyzes and reports the pedestrian events. This system uses an embedded neural-network processing unit (NPU) instead of a traditional graphics processing unit (GPU) platform to accelerate the reasoning of the YOLOv4 pedestrian detection module. The solution not only achieves a fast detection speed and can process 22 video streams in real time but also delivers better results in detecting pedestrians on highways in different road scenes.

    Reference
    [1] 郭爽. 基于流数据的交通异常事件检测方法研究[硕士学位论文]. 北京: 中国石油大学(北京), 2018.
    [2] 陈武阳, 赵于前, 阳春华, 等. 基于可见光与红外热图像的行车环境复杂场景分割. 自动化学报, 2021: 1–10
    [3] 王向军, 郭志翼. 算力限制平台下的长时目标跟踪. 红外与激光工程, 2020, 49(1): 0126003
    [4] 李梦静, 吉根林. 视频行人重识别研究进展. 南京师大学报(自然科学版), 2020, 43(2): 120–130.
    [5] 耿艺宁, 刘帅师, 刘泰廷, 等. 基于计算机视觉的行人检测技术综述. 计算机应用, 2021, 41(S1): 43–50
    [6] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv: 2004.10934, 2020.
    [7] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv: 1804.02767, 2018.
    [8] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. [doi: 10.1109/TPAMI.2015.2389824
    [9] Liu S, Qi L, Qin HF, et al. Path aggregation network for instance segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [10] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [11] 高宗, 李少波, 陈济楠, 等. 基于YOLO网络的行人检测方法. 计算机工程, 2017, 44(5): 936–944
    [12] Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego: IEEE, 2005. 886–893.
    [13] 陈光喜, 王佳鑫, 黄勇, 等. 基于级联网络的行人检测方法. 计算机应用, 2019, 39(1): 186–191. [doi: 10.11772/j.issn.1001-9081.2018061351
    [14] 王丹峰, 陈超波, 马天力, 等. 基于深度可分离卷积的YOLOv3行人检测算法. 计算机应用与软件, 2020, 37(6): 218–223. [doi: 10.3969/j.issn.1000-386x.2020.06.038
    [15] 邓杰, 万旺根. 基于改进YOLOv3的密集行人检测. 电子测量技术, 2021, 44(11): 90–95
    [16] 李慕锴, 张涛, 崔文楠. 基于YOLOv3的红外行人小目标检测技术研究. 红外技术, 2020, 42(2): 176–181
    [17] 康帅, 章坚武, 朱尊杰, 等. 改进YOLOv4算法的复杂视觉场景行人检测方法. 电信科学, 2021, 37(8): 46–56
    [18] Sambolek S, Ivasic-Kos M. Automatic person detection in search and rescue operations using deep CNN detectors. IEEE Access, 2021, 9: 37905–37922. [doi: 10.1109/ACCESS.2021.3063681
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

靳静玺,孙士杰,宋焕生.基于鲲鹏云的复杂道路场景行人监测系统.计算机系统应用,2022,31(6):109-116

Copy
Share
Article Metrics
  • Abstract:682
  • PDF: 1284
  • HTML: 1315
  • Cited by: 0
History
  • Received:August 28,2021
  • Revised:September 26,2021
  • Online: May 26,2022
Article QR Code
You are the first990384Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063