Highway Road Pothole Extraction Method Based on RANSAC
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To tackle the problems of heavy calculation burden and low efficiency of the pothole extraction algorithm based on the scanning of three-dimensional (3D) laser point clouds, this study proposes a pothole extraction method based on RANSAC. Firstly, RANSAC is employed to calculate the cross-sectional baseline for the correction of cross-sectional data and preliminary identification of pothole points and their locations. Secondly, the local reference road surface near the pothole is calculated by RANSAC so that the pothole points and road surface points can be marked. Thirdly, the seed filling algorithm is used to solve the connected domain and calculate the set of pothole points. Finally, the edge of the pothole is extracted with the set of pothole points and an exhaustive analysis of the pothole data is made. The experimental results show that RANSAC can quickly scan cross-sectional point cloud data, with the processing time increased by 56.46% on average compared with that of the curvature feature point detection algorithm. It has a good effect on extracting the depth and area of potholes with high accuracy. The average error of depth and area is 4.73% and 4.50%, respectively.

    Reference
    [1] 丁超. 高速公路沥青路面预防性养护思考. 建筑技术开发, 2020, 47(21): 118–120. [doi: 10.3969/j.issn.1001-523X.2020.21.055
    [2] 袁健. 现代公路养护中预防性公路养护技术的应用. 居舍, 2021, (4): 73–74
    [3] 马登成. 如何让公路养护装备更智慧. 中国公路, 2021, (10): 40–42
    [4] De Zoysa K, Keppitiyagama C, Seneviratne GP, et al. A public transport system based sensor network for road surface condition monitoring. Proceedings of the 2007 Workshop on Networked Systems for Developing Regions. Kyoto: ACM, 2007. 9.
    [5] Koch C, Brilakis I. Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 2011, 25(3): 507–515. [doi: 10.1016/j.aei.2011.01.002
    [6] 王朋辉, 胡永彪, 田明锐, 等. 基于图像纹理的沥青路面坑槽识别及提取. 计算机应用研究, 2018, 35(5): 1596–1600. [doi: 10.3969/j.issn.1001-3695.2018.05.069
    [7] 张丰梁. 基于车载双目视觉的路面坑槽检测方法研究[硕士学位论文]. 苏州: 苏州科技学院, 2015.
    [8] Zhang Z, Ai X, Chen CK, et al. An efficient algorithm for pothole detection using stereo vision. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence: IEEE, 2014. 564–568.
    [9] 惠冰, 郭牧, 周博闻. 沥青路面坑槽三维重构与指标计算方法. 哈尔滨工业大学学报, 2018, 50(3): 97–102. [doi: 10.11918/j.issn.0367-6234.201611104
    [10] 杨雷, 刘如飞, 卢秀山, 等. 一种车载激光扫描点云中路面坑槽自动提取方法. 测绘工程, 2020, 29(1): 66–71
    [11] 畅陈豪, 刘如飞, 柴永宁, 等. 点云剖面特征描述的路面坑槽提取方法. 地理空间信息, 2021, 19(2): 9–13. [doi: 10.3969/j.issn.1672-4623.2021.02.003
    [12] Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395. [doi: 10.1145/358669.358692
    [13] Chum O, Matas J. Optimal randomized RANSAC. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1472–1482. [doi: 10.1109/TPAMI.2007.70787
    [14] 曹毓, 冯莹, 杨云涛, 等. RANSAC直线估计方法在路面三维点云优化中的应用. 红外与激光工程, 2012, 41(11): 3108–3112. [doi: 10.3969/j.issn.1007-2276.2012.11.047
    [15] 马荣贵. 路面三维检测系统原理及方法研究[博士学位论文]. 西安: 长安大学, 2008.
    [16] 丁承君, 孙刚, 尹李亮, 等. 散乱点云的边界提取. 计算机技术与发展, 2017, 27(7): 83–86. [doi: 10.3969/j.issn.1673-629X.2017.07.020
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

廖飞钦,马荣贵,王朵,陈鑫龙.基于RANSAC的公路路面坑槽提取方法.计算机系统应用,2022,31(5):230-237

Copy
Share
Article Metrics
  • Abstract:647
  • PDF: 1485
  • HTML: 1472
  • Cited by: 0
History
  • Received:July 20,2021
  • Revised:August 18,2021
  • Online: April 11,2022
Article QR Code
You are the first990393Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063