Recommendation Model Fused with High-order Neighbor Features of Collaborative Knowledge Graph
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Introducing the entity and relationship information in the knowledge graph during recommendation is an effective way to alleviate the problem of cold start. The HAN model introduces the attention mechanism-based graph neural networks into heterogeneous graphs for the first time. However, it does not make full use of the high-order neighbor information of nodes. To solve this problem, the study proposes a recommendation model CKG-HAN that integrates the high-order neighbor features of the collaborative knowledge graph. The model employs meta-paths to connect project nodes and divides the collaborative knowledge graph into multiple subgraphs. The high-order neighbor features of each node in the subgraph are aggregated in the node attention layer of the model, and different weights are assigned to node features on different meta-paths by the relation attention layer. Finally, a node embedding representation is obtained which fully integrates semantic information. The Top-K recommendation is performed on the MovieLens-1M data set, and the results show that the model proposed in this study can effectively improve the accuracy of the recommendation results.

    Reference
    Related
    Cited by
Get Citation

于嘉玮,薛涛.融合协同知识图谱高阶邻居特征的推荐模型.计算机系统应用,2022,31(6):252-258

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 15,2021
  • Revised:September 13,2021
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063