Improved Person Re-identification Based on Global Feature
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Person re-identification faces challenges such as posture change, occlusion interference, and illumination difference, and thus it is very important to extract pedestrian features with strong discriminability. In this paper, an improved person re-identification method based on global features is proposed. Firstly, a multi-receptive field fusion module is designed to fully obtain pedestrian context information and improve the global feature discriminability. Secondly, generalized mean (GeM) pooling is used to obtain fine-grained features. Finally, a multi-branch network is constructed, and the features of different depths of the network are fused to predict the identity of pedestrians. The mAP indexes of this method on Market1501 and DukeMTMC-ReID are 83.8% and 74.9%, respectively. The experimental results show that the proposed method can effectively improve the model based on global features and raise the recognition accuracy of person re-identification.

    Reference
    Related
    Cited by
Get Citation

张晓涵.基于全局特征改进的行人重识别.计算机系统应用,2022,31(5):298-303

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 04,2021
  • Revised:August 31,2021
  • Adopted:
  • Online: April 11,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063