Survey on Single Object Tracking Algorithms Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Single object tracking is a research focus in the field of computer vision. Traditional algorithms including correlation filtering have fast tracking speed but generally low tracking accuracy due to the roughness of extracted manual features such as color and gray levels. With the development of deep learning theory in recent years, tracking methods using deep features can achieve a good balance between tracking accuracy and speed. This study first introduces the relevant background of single object tracking and then sorts out multiple algorithms that have emerged in the development of single object tracking from the two stages of single object tracking based on correlation filters and deep learning. The current mainstream Siamese network algorithms are also introduced in detail. Finally, a large data set is used to compare and analyze the excellent algorithms that have emerged in recent years. In view of the shortcomings and deficiencies of these algorithms, the development prospects of this field are provided in this study.

    Reference
    Related
    Cited by
Get Citation

王红涛,邓淼磊,赵文君,张德贤.基于深度学习的单目标跟踪算法综述.计算机系统应用,2022,31(5):40-51

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 02,2021
  • Revised:August 31,2021
  • Adopted:
  • Online: February 25,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063