Segmentation and Quantification Method of Machine-made Sand Powder Based on Improved UNet Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Machine-made sand is the fine aggregate for machine-made sand concrete. The quality of machine-made sand, determined by the stone powder content, has a significant impact on the strength, workability, durability, and other performance of machine-made sand concrete. Considering that with low accuracy and long duration, the traditional stone powder detection methods are cumbersome and difficult to quantify, this study proposes an improved UNet model based on the characteristics of machine-made sand. First, optical microscope equipment is used to collect images of machine-made sand particles, and these images are preprocessed by means of contrast enhancement, the look-up table algorithm, low-pass filtering, etc. Then, the deep residual and attention mechanism module is introduced to build an improved UNet model. Finally, segmentation and quantitative calculation are conducted on the stone powder in machine-made sand. The results show that the segmentation accuracy of the deep neural network constructed in this paper on the machine-made sand training dataset and the verification dataset is as high as 95.2% and 95.94%, respectively, and compared to the UNet, FCN, and Res-UNet methods, this method has significantly improved the segmentation effect on the same dataset.

    Reference
    Related
    Cited by
Get Citation

耿方圆,高尧,李伟,裴莉莉,袁博.基于改进UNet网络的机制砂石粉分割量化方法.计算机系统应用,2022,31(5):213-221

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 16,2021
  • Revised:August 18,2021
  • Online: April 11,2022
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063