Embedded Automotive Interior Parts Assembly Inspection Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The quality inspection after assembly of automotive interior parts is an important stage of assembly and an important guarantee for ensuring a high pass rate of interior parts assembly. The target detection hardware platform is built with low-power and high-performance NVIDIA development boards, and the Faster RCNN and YOLOv5 models are compared, and the YOLOv5 model, which has a better detection effect on small targets, is used to train the data collected by industrial cameras. The test results show that the accuracy of detecting 13 features of automobile interior fittings is as high as 95%, which realizes the efficient and accurate discrimination of automobile interior fittings and provides reliable auxiliary means for the assembly work of automobile interior fittings.

    Reference
    Related
    Cited by
Get Citation

谭任,唐忠,王鸿亮,王帅.基于深度学习的嵌入式汽车内饰件装配检测.计算机系统应用,2022,31(4):110-116

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 27,2021
  • Revised:July 29,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063