Sleep Staging Classification Based on CNN-BiLSTM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Sleep staging is the basis of sleep data analysis. Given the dependence on manual extraction, the inefficiency of manual classification, and the inaccuracy of automatic sleep staging of current sleep staging methods, this paper proposes a method that combines two deep-learning neural networks, namely the convolutional neural network (CNN) and the bidirectional long-short memory neural network (BiLSTM), and uses electroencephalogram (EEG) data to conduct automatic sleep staging. This algorithm can extractmelspectrograms toobtain the original EEG dataand uses CNN and BiLSTM to extractfeatures in the time domain and the frequency domain. CNN can extract the high-level features of sleep signals, and BiLSTM can improvethe accuracy of automatic sleep staging when combinedwith the correlation of sleep data of different stages. The experimental results show that the proposed methodachievesan average accuracy of 89.0% in the three-state sleep staging task on the Sleep-EDF dataset. Compared with the traditional staging model based on statistical rules, this model is simpler, more accurate, and more efficient and has better generalization performance. The proposed algorithm is suitable for nonlinear, unstable, and non-stationary EEG data and effectively improves the accuracy of the results of the automatic sleep staging model. It possesses practical value in modern sleep medicine, sleep disorders, and other research.

    Reference
    Related
    Cited by
Get Citation

卢伊虹,吴礼祝,潘家辉.基于CNN-BiLSTM的自动睡眠分期算法.计算机系统应用,2022,31(4):180-187

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 11,2021
  • Revised:August 04,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063