Conversion Method from Fortran to CUDA C
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Graphic processing unit (GPU)-based heterogeneous computing has gradually become the mainstream computing method. Nevertheless, due to the limited historical development of scientific computing programming, a lot of numerical computing software is still implemented in Fortran. In terms of increasing the computing speed, a large amount of software needs to be transplanted onto compute unified device architecture (CUDA) C. However, it would be a complicated and massive project to manually implement the program transplant. If automatic conversion from Fortran to CUDA C can be achieved, the efficiency of program development would be greatly improved. This study designs an algorithm converting Fortran to CUDA C, implements the algorithm through regular expressions and shell scripts, and verifies it by programming test cases. Experimental results show that this tool is reliable, stable, and compatible. In the transplant process of large programs, it can automatically filter and establish variable information tables and generate CUDA-related operation functions. The resulting code possesses good readability, and the conversion accuracy is more than 80%. The workload of the transplant is effectively reduced.

    Reference
    Related
    Cited by
Get Citation

刘颖辉,迟学斌,姜金荣,张峰.一种Fortran到CUDA C的转换方法.计算机系统应用,2022,31(5):351-357

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 09,2021
  • Revised:August 04,2021
  • Adopted:
  • Online: April 11,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063