Collaborative Filtering Recommendation Algorithm Based on Graph Attention Network Representation Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Given that the traditional model-based collaborative filtering recommendation algorithm fails to effectively utilize the attributes of users and items and the relationship structures among users and items, this study proposes a collaborative filtering recommendation algorithm based onrepresentation learning with graph attention networks. The algorithm uses the knowledge graph to represent the attribute features of the nodes and the relationship structures among the nodes. Then, representation learning of nodes with graph attention networks is performed on the homogeneous networks of users and items to obtain their network embedding feature representations. Finally, a neural matrix factorization model integrating network embedding is constructed to obtain the recommendation results.This paper conducts comparative experiments with related algorithms on the Movielens dataset. Experiments show that the proposed algorithm can optimize the recommendation performance of the model and improve the recommended recall rate HR@K and the normalized discounted cumulative gain NDCG@K.

    Reference
    Related
    Cited by
Get Citation

刘锦涛,谢颖华.基于图注意力网络表示学习的协同过滤推荐算法.计算机系统应用,2022,31(4):273-280

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2021
  • Revised:July 30,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063