Wrapper Method for Feature Selection Based on Quantum-inspired Evolutionary Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a wrapper method based on a quantum-inspired evolutionary algorithm for feature selection in supervised classification. Firstly, it analyzes the shortcoming of excessively preferring classification accuracy in existing subset evaluation methods and then puts forward two new subset evaluation methods respectively based on a fixed threshold and a statistical test. Second, some improvements are made to the evolutionary strategy of the quantum-inspired evolutionary algorithm. More specifically, its whole evolutionary process is divided into two phases, in which individual and global extrems are selected as the evolutionary target of population respectively. On this basis, a feature selection algorithm is designed in accordance with the general wrapper framework. Finally, 15 UCI datasets are used to validate the effectiveness of the subset evaluation methods and the evolutionary strategy, as well as the superiority of the proposed method over other 6 feature selection methods. The results show that the new wrapper method achieves similar or even better classification accuracy in more than 80% of the datasets and selects feature subset with less number of features in 86.67% of the datasets.

    Reference
    Related
    Cited by
Get Citation

雷华军,蒋强.基于量子进化算法的包装式特征选择方法.计算机系统应用,2022,31(4):204-212

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 20,2021
  • Revised:July 14,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063