Long-term Target Tracking Algorithm Based on Twin Network Rechecking
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The traditional long-term correlation filter uses a single feature and cannot capture the target again after tracking failure. Considering this, the paper proposes a multi-feature fusion long-term target tracking algorithm combined with deep learning. On the basis of the long-term correlation tracking (LTC) algorithm, the proposed algorithm uses multi-feature fusion to join together the local binary pattern feature, the improved directional gradient histogram feature, and the color feature to promote the robustness of the tracking algorithm. Since the LCT algorithm adopts a random fern classifier to recheck the target, which has a limited detection range and low rechecking accuracy, the deep learning-based twin network instance search (SINT) method is employed to recheck the global image. The experiment in this paper is carried out on the OTC100 dataset, and the results show that compared with the LCT algorithm, the proposed algorithm has improved the range accuracy and the success rate by 13% and 10.3% respectively.

    Reference
    Related
    Cited by
Get Citation

王林,郑有玲.结合孪生网络重检的长期目标跟踪算法.计算机系统应用,2022,31(4):188-195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2021
  • Revised:July 30,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063