Overview on Knowledge Graph Question Answering
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of knowledge graphs, utilizing given knowledge graph data to automatically obtain answers to human natural language questions has become popular in recent years. QA systems such as Siri and Xiao Ai have been widely used. Thanks to the introduction of deep learning, breakthroughs have been made in various sub-projects in this field, but there are still difficulties that need to be overcome, such as multi-hop reasoning and strategy combination. Therefore, starting from the mainstream construction method, this study summarizes the current research status and challenges in this field, which can not only help researchers to efficiently carry out research in this field but also help researchers in different industries to develop industry-related QA systems to improve productivity.

    Reference
    Related
    Cited by
Get Citation

郑泳智,朱定局,吴惠粦,彭小荣.知识图谱问答领域综述.计算机系统应用,2022,31(4):1-13

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 10,2021
  • Revised:July 14,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063