Research on Process Mining Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Due to the rapid development of process mining technology, the variety of process mining algorithms has increased rapidly, and the introduction of existing algorithm research articles is no longer comprehensive. In view of this, we systematically analyze and summarize process mining algorithms so far. Firstly, we analyze the current situation of process mining algorithms in general and then classify them into two categories according to their characteristics: traditional process mining algorithms and process mining algorithms based on computational intelligence and machine learning technologies. Meanwhile, we briefly introduce the basic ideas and related steps of each subclass of representative algorithms and discuss the current advantages and disadvantages of the algorithms. Finally, suggestions regarding algorithm research and improvement in the next step are proposed. The classification and summary of algorithms can help beginners to sort out relevant algorithm knowledge in the field of process mining, and the analysis of the development status and algorithm comparison can guide researchers in areas that need to be broken through.

    Reference
    [1] Aalst W. Process mining: Discovery, Conformance and enhancement of business processes. Heidelberg: Springer Publishing, 2011.
    [2] 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化. 北京: 首都经济贸易大学出版社, 2016.
    [3] van der Aalst W, Weijters T, Maruster L. Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1128–1142.
    [4] de Medeiros AKA, van Dongen BF, van der Aalst WMP, et al. Process mining for ubiquitous mobile systems: An overview and a concrete algorithm. Proceedings of the 2nd International Workshop on Ubiquitous Mobile Information and Collaboration Systems. Riga: Springer, 2005. 151–165.
    [5] Wen LJ, van der Aalst WMP, Wang JM, et al. Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery, 2007, 15(2): 145–180.
    [6] Wen LJ, Wang JM, Sun JG. Mining invisible tasks from event logs. Proceedings of the 9th Asia-Pacific Web Conference. Huangshan: Springer, 2007. 358–365.
    [7] Li JF, Liu DY, Yang B. Process mining: Extending α-algorithm to mine duplicate tasks in process logs. Proceedings of the APWeb/WAIM 2007 International Workshops: DBMAN 2007, WebETrends 2007, PAIS 2007 and ASWAN 2007. Huangshan: Springer, 2007. 396–407.
    [8] 李红. 流程挖掘算法研究[博士学位论文]. 昆明: 云南大学, 2015.
    [9] Weijters AJMM, van der Aalst WMP. Rediscovering workflow models from event-based data using little thumb. Integrated Computer-Aided Engineering, 2003, 10(2): 151–162.
    [10] Weijters AJMM, van der Aalst WMP, de Medeiros AKA. Process mining with the HeuristicsMiner algorithm. Eindhoven: Eindhoven University of Technology, 2006. 1–34.
    [11] 孙笑笑, 张蕾, 俞东进, 等. 基于依赖关联度的业务过程噪声日志过滤方法. 计算机集成制造系统, 2019, 25(4): 969–977.
    [12] 杨丽琴, 康国胜, 蔡伟刚, 等. 业务流程挖掘算法研究. 计算机应用与软件, 2016, 33(4): 44–50.
    [13] Li Y, Feng YQ. An automatic business process modeling method based on markov transition matrix in BPM. Proceedings of 2006 International Conference on Management Science and Engineering. Lille: IEEE, 2006. 46–51.
    [14] Herbst J, Karagiannis D. Workflow mining with InWoLvE. Computers in Industry, 2004, 53(3): 245–264.
    [15] Sun WX, Li T, Peng W, et al. Incremental workflow mining with optional patterns. Proceedings of 2006 IEEE International Conference on Systems, Man and Cybernetics. Taipei: IEEE, 2006. 2764–2771.
    [16] Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1994. 487–499.
    [17] Ye YB, Chiang CC. A parallel apriori algorithm for frequent itemsets mining. Proceedings of the 4th International Conference on Software Engineering Research, Management and Applications (SERA’06). Seattle: IEEE, 2006. 87–94.
    [18] 卢盛祺, 李远刚, 管连, 等. 流程挖掘在银行服务管理中的应用. 微型机与应用, 2016, 35(18): 88–92.
    [19] Lemos AM, Sabino CC, Lima RMF, et al. Using process mining in software development process management: A case study. Proceedings of 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage: IEEE, 2011. 1181–1186.
    [20] de Medeiros AKA, Weijters AJMM, van der Aalst WMP. Genetic process mining: An experimental evaluation. Data Mining and Knowledge Discovery, 2007, 14(2): 245–304.
    [21] 陈希. 一种工作流的挖掘算法研究[硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2016.
    [22] 白雪骢, 朱焱. 一种基于禁忌搜索算法的流程挖掘方法. 计算机科学, 2016, 43(4): 214–218, 240.
    [23] 李洪奇, 李莉, 谢绍龙. 基于粒子群优化算法的过程挖掘. 2008中国计算机大会论文集. 西安: 中国计算机学会, 2008. 338–345.
    [24] Günther CW, van der Aalst WMP. Fuzzy mining—adaptive process simplification based on multi-perspective metrics. Proceedings of the 5th International Conference on Business Process Management. Brisbane: Springer, 2007. 328–343.
    [25] 周逸璇. 基于日志抽象的流程挖掘方法研究[硕士学位论文]. 昆明: 云南大学, 2012.
    [26] Ardimento P, Bernardi ML, Cimitile M, et al. Learning analytics to improve coding abilities: A fuzzy-based process mining approach. Proceedings of 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). New Orleans: IEEE, 2019. 1–7.
    [27] Bernardi ML, Cimitile M, Martinelli F, et al. A fuzzy-based process mining approach for dynamic malware detection. Proceedings of 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Naples: IEEE, 2017. 1–8.
    [28] Mitchell T M. Machine learning. New York: McGraw-Hill, 1997.
    [29] Rozinat A, van der Aalst WMP. Decision mining in business processes. Russian Mathematical Surveys, 2006, 38(3): 23–95.
    [30] 高昂, 杨扬, 张静乐, 等. 基于工作流日志的决策规则挖掘研究. 计算机应用研究, 2009, 26(11): 4104–4107.
    [31] de Leoni M, van der Aalst WMP. Data-aware process mining: Discovering decisions in processes using alignments. Proceedings of the 28th Annual ACM Symposium on Applied Computing. Coimbra: ACM, 2013. 1454–1461.
    [32] 瞿华. 一种基于过程挖掘的业务过程决策规则发现算法. 计算机应用研究, 2012, 29(6): 2192–2195.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

林文祥,刘德生.流程挖掘算法综述.计算机系统应用,2022,31(3):1-8

Copy
Share
Article Metrics
  • Abstract:1646
  • PDF: 9526
  • HTML: 5157
  • Cited by: 0
History
  • Received:May 21,2021
  • Revised:June 21,2021
  • Online: January 24,2022
Article QR Code
You are the first990807Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063