Continuous Sign Language Recognition Based on Second-order Hidden Markov Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the traditional first-order hidden Markov model (HMM1), each state in the state sequence is assumed to be only related to the previous state. In this way, although the model learning and recognition algorithm can be simply and effectively deduced, a lot of information passed down from the above is lost. Therefore, in view of the traditional HMM1, a continuous sign language recognition method based on the second-order hidden Markov model (HMM2) is proposed to solve the problems of the difficulty and low accuracy of sign language recognition. In this method, a video of sign language is divided into several short videos by the sliding window algorithm, and the feature vectors of the short videos and word videos of sign language are obtained through the 3D convolution model. The relevant parameters of the HMM2 are thereby calculated, and continuous sign language recognition is achieved via the Viterbi algorithm. Experimental results show that the accuracy of sign language recognition based on the HMM2 is 88.6%, which is higher than that of the traditional HMM1.

    Reference
    Related
    Cited by
Get Citation

梅家俊,王卫民,戴兴雨.基于二阶隐马尔可夫模型的连续手语识别.计算机系统应用,2022,31(4):375-380

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 02,2021
  • Revised:July 07,2021
  • Adopted:
  • Online: March 22,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063