Mobile Robot Localization Based on Multi-sensor Fusion
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In view of the low positioning accuracy of a single sensor and the importance of the environment map in the mobile robot positioning system, this paper proposes a mobile robot localization method based on multi-sensor fusion. Firstly, in an unknown environment, this paper respectively uses a single odometer and fused odometer and inertial measurement unit (IMU) by extended Kalman filter (EKF) algorithm to estimate the position. Experiments show that they have cumulative errors. Then, in a known environment, adaptive Monte Carlo localization (AMCL) algorithm is used to integrate odometer, IMU and lidar for positioning. The experimental results show that the method can correct the cumulative errors. Compared with the single odometer positioning and fusion positioning based on the EKF algorithm in an unknown environment, the proposed method has the average positioning error reduced by 68% and 30% respectively, which proves the effectiveness of multi-sensor fusion positioning and the importance of environment maps.

    Reference
    [1] Zhao SY, Huang B, Liu F. Localization of indoor mobile robot using minimum variance unbiased fir filter. IEEE Transactions on Automation Science and Engineering, 2018, 15(2): 410–419. [doi: 10.1109/TASE.2016.2599864
    [2] Xu XY, Wang M, Luo LY, et al. An indoor pedestrian localization algorithm based on multi-sensor information fusion. Journal of Computer and Communications, 2017, 5(3): 102–115. [doi: 10.4236/jcc.2017.53012
    [3] 彭文正, 敖银辉, 黄晓涛, 等. 多传感器信息融合的自动驾驶车辆定位与速度估计. 传感技术学报, 2020, 33(8): 1140–1148. [doi: 10.3969/j.issn.1004-1699.2020.08.010
    [4] Du T, Zeng YH, Yang J, et al. Multi-sensor fusion SLAM approach for the mobile robot with a bio-inspired polarised skylight sensor. IET Radar, Sonar & Navigation, 2020, 14(12): 1950–1957
    [5] 柯显信, 张文朕, 杨阳, 等. 仿人机器人多传感器定位系统. 浙江大学学报(工学版), 2018, 52(7): 1247–1252. [doi: 10.3785/j.issn.1008-973X.2018.07.003
    [6] 尹皓, 李海滨, 王利利. 基于多传感器融合的移动机器人定位研究. 机床与液压, 2021, 49(9): 6–10. [doi: 10.3969/j.issn.1001-3881.2021.09.002
    [7] He C, Ma RJ, Qu HY, et al. Research on mobile robot positioning and navigation system based on multi-sensor fusion. Journal of Physics: Conference·Series, 2020, 1684(1): 012011
    [8] Rigatos GG. Extended kalman and particle filtering for sensor fusion in motion control of mobile robots. Mathematics and Computers in Simulation, 2010, 81(3): 590–607. [doi: 10.1016/j.matcom.2010.05.003
    [9] 张鹤. 基于地图匹配的高精度室内定位方法研究[硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2018.
    [10] Yu WP, Zhang JZ, Xu JD, et al. An accurate indoor map matching algorithm based on activity detection and crowdsourced Wi-Fi. Science China Technological Sciences, 2019, 62(9): 1492–1501. [doi: 10.1007/s11431-018-9346-3
    [11] 艾国. 基于曲线匹配的地图匹配辅助激光陀螺惯性导航技术. 光学与光电技术, 2018, 16(4): 92–98
    [12] 刘玉祥. 多传感器融合与点云匹配的移动机器人定位算法研究[硕士学位论文]. 成都: 电子科技大学, 2020.
    [13] Chen ZH, Zou H, Jiang H, et al. Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization. Sensors, 2015, 15(1): 715–732. [doi: 10.3390/s150100715
    [14] 王法胜, 鲁明羽, 赵清杰, 等. 粒子滤波算法. 计算机学报, 2014, 37(8): 1679–1694
    [15] Hu C, Dong W, Yang YH, et al. Runtime verification on hierarchical properties of ROS-based robot swarms. IEEE Transactions on Reliability, 2020, 69(2): 674–689. [doi: 10.1109/TR.2019.2923681
    [16] Moore T, Stouch D. A generalized extended kalman filter implementation for the robot operating system. Proceedings of the 13th International Conference IAS-13. Cham: Springer, 2016. 335–348.
    [17] 安雷, 张国良, 张维平, 等. 移动机器人扩展卡尔曼滤波定位与传感器误差建模. 信息与控制, 2012, 41(4): 406–412
    [18] Guan RP, Ristic B, Wang LP, et al. KLD sampling with Gmapping proposal for Monte Carlo localization of mobile robots. Information Fusion, 2019, 49: 79–88. [doi: 10.1016/j.inffus.2018.09.003
    [19] 王宁, 王坚, 李丽华. 一种改进的AMCL机器人定位方法. 导航定位学报, 2019, 7(3): 31–37. [doi: 10.3969/j.issn.2095-4999.2019.03.006
    [20] 刘鹏, 刘凯, 周愉. 基于Wi-Fi和自适应蒙特卡洛的移动机器人定位方法的研究. 计算机应用与软件, 2021, 38(4): 75–81, 94. [doi: 10.3969/j.issn.1000-386x.2021.04.013
    Related
    Cited by
Get Citation

袁千贺,田昕,沈斯杰.基于多传感器融合的移动机器人定位.计算机系统应用,2022,31(3):136-142

Copy
Share
Article Metrics
  • Abstract:970
  • PDF: 2462
  • HTML: 2580
  • Cited by: 0
History
  • Received:April 28,2021
  • Revised:July 01,2021
  • Online: January 24,2022
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063