Image Super-resolution Reconstruction Based on Improved Upsampling Technology
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Image super-resolution reconstruction technology has always been a hot research direction in the field of computer vision. To improve the quality of reconstructed images, this paper proposes an upsampling technology based on content awareness for image reconstruction. The residual dense network is used as the backbone network, and the content awareness-based upsampling replaces the traditional sub-pixel convolution upsampling. In other words, in the stage of feature reconstruction, the convolution kernel will not share parameters in the entire feature map, but the neural network can generate a specific convolution kernel depending on the content of the feature map in each pixel. The algorithm reduces the number of parameters, thereby speeding up the network training speed. After multiple rounds of training and testing, the results show that the improved technology can yield a clearer reconstructed image and presents a great visual effect.

    Reference
    [1] 陶状, 廖晓东, 沈江红. 双路径反馈网络的图像超分辨重建算法. 计算机系统应用, 2020, 29(4): 181–186. [doi: 10.15888/j.cnki.csa.007344
    [2] 陈栋. 单幅图像超分辨率重建算法研究[硕士学位论文]. 广州: 华南理工大学, 2020.
    [3] 杜鹏. 面向视频超分辨率的深度学习研究[硕士学位论文]. 成都: 电子科技大学, 2020.
    [4] 于海星. 图像超分辨率算法在卫星遥感图像上的应用[硕士学位论文]. 上海: 上海大学, 2019.
    [5] 黄吉庆. 医学图像的超分辨率重建算法研究[硕士学位论文]. 贵阳: 贵州大学, 2019.
    [6] 席志红, 侯彩燕, 袁昆鹏. 基于残差网络的医学图像超分辨率重建. 计算机工程与应用, 2019, 55(19): 191–197. [doi: 10.3778/j.issn.1002-8331.1806-0243
    [7] 肖进胜, 刘恩雨, 朱力, 等. 改进的基于卷积神经网络的图像超分辨率算法. 光学学报, 2017, 37(3): 0318011
    [8] Dong C, Loy CC, He KM, et al. Learning a deep convolutional network for image super-resolution. Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014. 184–199.
    [9] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 105–114.
    [10] Dong C, Loy CC, Tang XO. Accelerating the super-resolution convolutional neural network. Proceedings of 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 391–407.
    [11] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [12] Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 1646–1654.
    [13] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 2261–2269.
    [14] Tong T, Li G, Liu XJ, et al. Image super-resolution using dense skip connections. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 4809–4817.
    [15] Zhang YL, Tian YP, Kong Y, et al. Residual dense network for image super-resolution. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 2472–2481.
    [16] 程玉, 郑华, 陈晓文, 等. 基于密集残差注意力网络的图像超分辨率算法. 计算机系统应用, 2021, 30(1): 135–140. [doi: 10.15888/j.cnki.csa.007708
    [17] Zhang YL, Li KP, Li K, et al. Image super-resolution using very deep residual channel attention networks. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 294–310.
    [18] Kim JH, Chou JH, Cheon M, et al. RAM: Residual attention module for single image super-resolution. arXiv: 1811.12043, 2020.
    [19] Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. arXiv: 1406.2661, 2014.
    [20] Wang XT, Yu K, Wu SX, et al. ESRGAN: Enhanced super-resolution generative adversarial networks. Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018. 63–79.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

雷帅,廖晓东,潘浩,李俊珠,陈清俊.基于改进上采样技术的图像超分辨率重建.计算机系统应用,2022,31(3):220-225

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 28,2021
  • Revised:July 01,2021
  • Online: January 24,2022
Article QR Code
You are the first990356Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063