BiLSTM Network Fraud Phone Recognition Based on Attention Mechanism
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Telephone fraud is increasingly rampant, affecting the safety of people’s lives and property seriously. How to effectively prevent telephone fraud has become a great concern of society. This paper proposes a fraud phone recognition method based on the Attention-BiLSTM model. This method uses phone text as a data set and adopts a bi-directional long short-term memory (BiLSTM) model to extract the long-distance characteristics of a sentence. Furthermore, the attention mechanism is utilized to enhance the meaning feature weight of the words related to the fraud parts in phone text. The feature vector representation of phone text at the sentence level is achieved and inputted to the Softmax layer for classification prediction. The experimental results show that the BiLSTM fraud phone classification model based on the attention mechanism has the accuracy increased by 2.15% and 0.6% respectively compared with baseline models, possessing more excellent prediction performance.

    Reference
    [1] 刘源. 运用聚类数据挖掘技术预防电信业中的欺诈行为[硕士学位论文]. 吉林: 吉林大学, 2005: 1–5
    [2] 殷春祥, 朱晓民, 彭刚. 骚扰电话监控系统的研究与设计. 计算机系统应用, 2010, 19(7): 6–9. [doi: 10.3969/j.issn.1003-3254.2010.07.002
    [3] 计国华, 邵四清. 上海移动骚扰电话分析拦截系统应用案例. 电信网技术, 2011, (5): 82–87
    [4] 张慧嫦, 李力卡. 基于信令的电话诈骗行为检测及防范研究. 广东通信技术, 2016, 36(10): 6–9, 45. [doi: 10.3969/j.issn.1006-6403.2016.10.002
    [5] 程锦红, 萧瑶, 方雅丽, 等. 基于大数据的防范电话诈骗体系架构研究. 通讯世界, 2020, 27(4): 13–15. [doi: 10.3969/j.issn.1006-4222.2020.04.008
    [6] 白晶晶, 张利宏. 基于大数据挖掘技术的诈骗电话识别与管理. 长江信息通信, 2021, 34(5): 126–128. [doi: 10.3969/j.issn.1673-1131.2021.05.039
    [7] Joachims T. Text categorization with support vector machines: Learning with many relevant features. Proceedings of the 10th European Conference on Machine Learning Chemnitz. Germany: Springer, 1998. 137–142.
    [8] Kim SB, Han KS, Rim HC, et al. Some effective techniques for naive Bayes text classification. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(11): 1457–1466. [doi: 10.1109/TKDE.2006.180
    [9] Li H, Yamanishi K. Text classification using ESC-based stochastic decision lists. Proceedings of the 8th International Conference on Information and Knowledge Management. Kansas City: ACM, 1999. 122–130.
    [10] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735
    [11] 黄贤英, 刘广峰, 刘小洋, 等. 基于word2vec和双向LSTM的情感分类深度模型. 计算机应用研究, 2019, 36(12): 3583–3587, 3596
    [12] 吴鹏, 应杨, 沈思. 基于双向长短期记忆模型的网民负面情感分类研究. 计算机应用, 2019, 39(7): 1931–1935.
    [13] 赵明, 杜会芳, 董翠翠, 等. 基于Word2vec和LSTM的饮食健康文本分类研究. 农业机械学报, 2017, 48(10): 202–208. [doi: 10.6041/j.issn.1000-1298.2017.10.025
    [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the Annual Conference on Neural Information Processing Systems 2017. Long Beach, 2017. 5998–6008.
    [15] Carrasco M, Barbot A. Spatial attention alters visual appearance. Current Opinion in Psychology, 2019, 29: 56–64. [doi: 10.1016/j.copsyc.2018.10.010
    [16] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. Proceedings of the 3rd International Conference on Learning Representations. San Diego, 2015. 1–15.
    [17] 关鹏飞, 李宝安, 吕学强, 等. 注意力增强的双向LSTM情感分析. 中文信息学报, 2019, 33(2): 105–111. [doi: 10.3969/j.issn.1003-0077.2019.02.014
    [18] 汪嘉伟, 杨煦晨, 琚生根, 等. 基于卷积神经网络和自注意力机制的文本分类模型. 四川大学学报(自然科学版), 2020, 57(3): 469–475
    [19] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. Proceedings of the 27th Annual Conference on Neural Information Processing Systems 2013. Lake Tahoe, 2013. 3111–3119.
    [20] Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 2005, 18(5-6): 602–610. [doi: 10.1016/j.neunet.2005.06.042
    [21] Li S, Zhao Z, Hu RF, et al. Analogical reasoning on chinese morphological and semantic relations. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018. 138–143.
    Related
    Cited by
Get Citation

许鸿奎,姜彤彤,李鑫,周俊杰,张子枫,卢江坤.基于Attention机制的BiLSTM诈骗电话识别.计算机系统应用,2022,31(3):326-332

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 28,2021
  • Revised:July 01,2021
  • Online: January 24,2022
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063