BiLSTM Network Fraud Phone Recognition Based on Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Telephone fraud is increasingly rampant, affecting the safety of people’s lives and property seriously. How to effectively prevent telephone fraud has become a great concern of society. This paper proposes a fraud phone recognition method based on the Attention-BiLSTM model. This method uses phone text as a data set and adopts a bi-directional long short-term memory (BiLSTM) model to extract the long-distance characteristics of a sentence. Furthermore, the attention mechanism is utilized to enhance the meaning feature weight of the words related to the fraud parts in phone text. The feature vector representation of phone text at the sentence level is achieved and inputted to the Softmax layer for classification prediction. The experimental results show that the BiLSTM fraud phone classification model based on the attention mechanism has the accuracy increased by 2.15% and 0.6% respectively compared with baseline models, possessing more excellent prediction performance.

    Reference
    Related
    Cited by
Get Citation

许鸿奎,姜彤彤,李鑫,周俊杰,张子枫,卢江坤.基于Attention机制的BiLSTM诈骗电话识别.计算机系统应用,2022,31(3):326-332

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 28,2021
  • Revised:July 01,2021
  • Adopted:
  • Online: January 24,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063