Graphite Classification Using Transfer Learning and Focal Loss Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For better use of high-quality graphite resources, this paper proposed a graphite classification and recognition algorithm based on transfer learning and focal loss convolutional neural network (CNN). The offline expansion and online enhancement of the self-built initial data set can effectively expand the data set and reduce the overfitting risk of deep CNN. With VGG16, ResNet34 and MobileNet V2 as basic models, a new output module is redesigned and loaded into the full connection layer, which improves the generalization ability and robustness of the model. Combined with the focal loss function, the hyperparameters of the model are modified and trained on the graphite data set. The simulation results show that the proposed method has the accuracy improved to above 95% with faster convergence and a more stable model, which proves the feasibility and effectiveness of the proposed algorithm.

    Reference
    Related
    Cited by
Get Citation

徐小平,余香佳,刘广钧,王峰.利用迁移学习和焦点损失卷积神经网络的石墨分类.计算机系统应用,2022,31(3):248-254

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 07,2021
  • Revised:June 08,2021
  • Adopted:
  • Online: January 24,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063