FSSD Algorithm Based on Ensemble Feature Selection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fast And Efficient Subgroup Set Discovery (FSSD) is a subgroup discovery algorithm that aims to provide a diverse set of patterns in a short period of time. However, in order to reduce the running time, this algorithm selects a feature subset with a small number of domains. When the feature subset is irrelevant or weakly related to the target class, the quality of the pattern set decreases. To solve this problem, this paper proposes a FSSD algorithm based on ensemble feature selection. In the preprocessing stage, it uses ensemble feature selection based on ReliefF (Relief-F) and analysis of variance to obtain feature subset with diversity and strong correlation, and then uses FSSD algorithm to return high-quality pattern set. The experimental results on the UCI datasets and the National Health and Nutrition Examination Survey (NHANES) dataset show that the improved FSSD algorithm improves the quality of the pattern set, thereby summarizing more interesting knowledge. Furthermore, the feature validity and positive predictive value of the pattern set were further analyzed on the NHANES dataset.

    Reference
    Related
    Cited by
Get Citation

张崟,何振峰.基于集成特征选择的FSSD算法.计算机系统应用,2022,31(3):275-281

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 19,2021
  • Revised:June 14,2021
  • Adopted:
  • Online: January 24,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063